BCH - 20 - DCE , Biotechnology

Unit I

Recombinant DNA Technology:

Vectors: Plasmids, bacteriophages, phagemids, cosmids, YACs, and BACs

Methods of creating recombinant DNA molecule

Transformation and screening of recombinant vector

Confirmation of insert

Expression strategies in different hosts, vector and host engineering

Unit II:

Types of restriction endonucleases Library construction Types of libraries:

cDNA and genomic libraries

Primary, secondary and tertiary screening methods

Unit III:

Animal Cell Culture:

Primary and established cell lines

Types of various cell lines

Biology and characterization of the cultured cells.

Introduction to balanced salt solutions and simple growth medium.

Role of CO2, serum and supplements. Serum and serum free media, defined media and their applications, antibiotics

Immortalization and methods used to immortalize cells.

Viability and cytotoxicity assays: Trypan blue, MTT, TUNEL and EUSA based assays.

Unit- IV:

Immunobiotechnology

Development of Monoclonal Antibodies by:

Hybridoma Technology

Applications of MCA and Antibody Fragments.

Vaccination: Conventional and genetically engineered vaccines.

Lymphokines – production and applications

BCH - 28 - DCE, Microbiology

Unit-I

Historical perspectives of microbiology

Importance of microbiology in agriculture, human and animal health industry and environment Microbial classification

Types of microorganisms

General characteristics of main groups of microorganisms

Criteria used in the classification of microorganisms- cytology, genetics, host specialization, serology

Microbial growth

Different phases of microbial growth

Measurement of microbial growth

Effects of various environmental factors on microbial growth

Control of microbial growth, physical control, chemical control and antibiotics

Mechanism of drug resistance

Unit-II

Isolation, culture, identification and preservation of bacteria

Gram positive and gram negative organisms

Structure and functions of peptidoglycan in gram positive and gram negative organisms Functions of polymeric components in outer membrane and acidic polymers in gram negative organisms

Special features of bacterial metabolism

Unit-III

Microbial nutrition

Nutritional types of microorganisms

Uptake of nutrients by the microbial cells

Nutritional requirement of bacteria

Resident flora

The human as a habitat

Pathogenicity and virulence factors

Bacterial toxigenecity (pathogenesis of infectious diseases)

Food spoilage, fermentation, food-borne infection

Biochemistry of nitrogen fixation and sulfur reduction

Unit-IV

Virus classification

Structure of virus

Viral proteins and methods of assay

Virus- host interaction

Microbial diseases

Respiratory diseases caused by viruses and bacteria – tuberculosis, small pox

Sexually transmitted diseases including AIDS

BCH - 29 - DCE, Endocrinology

Unit I

Introduction to endocrinology

Mechanism of action of hormones - hormone receptors, second messenger mechanisms for mediating intracellular hormone functions

Structure, biosynthesis, secretion, transport, mechanism of action and physiological role of Pancreatic and

Thyroid hormones

Unit II

Pituitary hormones and their control by hypothalamus

Structure, biosynthesis, secretion, transport, mechanism of action and physiological role of Adrenal,

Gastrointestinal,

Sex hormones

BCH - 30 - DCE, Micro Nutrition

Unit I

Vitamins

Introduction to vitamins

Definition, classification

Nutritional sources, DRI recommendations and deficiency and health problems of:

- Vitamin A.
- Vitamin D.
- Vitamin C
- Vitamin E.
- Vitamin K

Role in human nutrition, recommendation, physiology and biochemistry of:

- Thiamine
- Riboflavin
- Niacin
- B6 vitamin
- B12 Vitamin
- Folic acid

Unit II

Minerals:

Nutritional sources, DRI recommendations and role in human nutrition of:

- Calcium
- Iron
- Zinc
- Iodine
- Selenium
- Fluoride
- Magnesium

BCH - 04- DCE, Plant Biochemistry

Unit-I

Photosynthesis

Photosynthesis in higher plants – general concepts

Organization of the photosynthetic apparatus

Mechanism of electron transport in photosynthesis

Proton transport and ATP synthesis

Calvin cycle and its regulation

C4 and CAM pathways

Repair and regulation of photosynthetic machinery

Photorespiration and its significance

Unit-II

Assimilation of mineral nutrients

Nitrate and ammonia assimilation and their incorporation into amino acids

Biochemistry of nitrogen fixation, nitrogenase complex and its functions

Nitrogen fixation genes and their regulation

Sulfate reduction and assimilation

Sulfite oxidation

Unit-III

Special features of secondary plant metabolism

Secondary metabolites - phenolics, tannins, lignins, lignans, pigments, terpenes, alkaloids and surface waxes – their biosynthesis and physiological role

Plant defense against pathogens

Translocation of inorganic and organic substances

Pathways of translocation and mechanism of translocation in the phloem

Unit-IV

Plant growth regulators

Auxins

Chemical nature, biosynthesis and metabolism

Physiological and developments effects,

Molecular basis of its action

Gibberlins

Chemical structure, biosynthesis, metabolism and mechanism of its molecular effects Cytokinin

Properties and biological role

Cellular and molecular modes of cytokinin action

Abscisic acid

Chemical structure, metabolism and transport

Molecular effects in the regulation of growth and development

BCH - 05 - DCE, Biochemical Techniques

Unit-I

Centrifugation

Basic principle of centrifugation

Factors affecting sedimentation

Types of centrifugation including differential, density gradient and ultracentrifugation

Analytical and preparative centrifugation

Applications of centrifugation

Chromatographic techniques

Basic principle and applications of chromatographic techniques:

Gel filtration chromatography

Affinity chromatography

Gas chromatography

Ion Exchange chromatography

High-pressure liquid chromatography

Unit-II

Electrophoresis

Types of electrophoresis

Factors affecting electrophoretic mobility

Uses of electrophoresis

Isoelectric focusing

Analysis of biomolecules using UV/visible, fluorescence spectroscopy

Use of radioisotopes in biology

Their detection, measurement and safety guidelines

Unit-III

Different blotting techniques

Western, Northern, Southern

Microscopy

Light, electron (scanning and transmission), phase contrast and fluorescence microscopy

Freeze-fracture techniques

Polymerase chain reaction

Principles of - RFLP, RAPD and AFLP techniques

Single strand conformation polymorphism and heteroduplex analysis

Gel retardation assays

DNA Sequencing

Next generation sequencing

Sequencing while synthesizing

Unit-IV

Detection of molecules using ELISA, RIA, immunoprecipitation, flowcytometry

Detection of molecules in living cells, in situ localization by techniques such as FISH and GISH.

Methods for analysis of gene expression at RNA and protein level, large-scale expression analysis, such as micro array based techniques

Coimmunoprecipitation and Chromatin immunoprecipitation

DNA profiling, DNA foot printing

Gene silencina

Micro RNA

RNA interference

BCH - 12 - DCE, Enzymology

Unit-I

Enzyme classification and nomenclature

Methods of examining enzyme – substrate complexes

Enzyme kinetics

An introduction, factors influencing enzyme reaction velocity

Henri and Michealis Menten equation, Briggs-Haldane modification

Determination and significance of kinetic constants

Derivation of rate expression for Ping Pong and ordered Bi Bi reaction mechanism

Unit-II

Enzyme inhibition
Reversible inhibition, its types
Determination of inhibitor constants
Irreversible inhibition
Enzyme assays
Mechanism of catalysis of Serine proteases
Triose phosphate isomerases

Unit-III

Enzyme regulation
General mechanism of enzyme regulation
Allosteric enzymes
Sigmoidal kinetics and their physiological significance
Symmetric and sequential modes for action of allosteric enzymes and their significance
Feed back inhibition and feed forward stimulation
Reversible and irreversible covalent modifications of enzymes

Unit IV

Immobilization of enzymes

- Methods of enzyme immobilization
- Effects of partition on kinetics and performance with particular emphasis on changes in pH and hydrophobicity
- Applications of immobilized enzymes

BCH - 05 - DCE, Biochemical Techniques

Unit-I

Centrifugation

Basic principle of centrifugation

Factors affecting sedimentation

Types of centrifugation including differential, density gradient and ultracentrifugation

Analytical and preparative centrifugation

Applications of centrifugation

Chromatographic techniques

Basic principle and applications of chromatographic techniques:

Gel filtration chromatography

Affinity chromatography

Gas chromatography

Ion Exchange chromatography

High-pressure liquid chromatography

Unit-II

Electrophoresis

Types of electrophoresis

Factors affecting electrophoretic mobility

Uses of electrophoresis

Isoelectric focusing

Analysis of biomolecules using UV/visible, fluorescence spectroscopy

Use of radioisotopes in biology

Their detection, measurement and safety guidelines

Unit-III

Different blotting techniques

Western, Northern, Southern

Microscopy

Light, electron (scanning and transmission), phase contrast and fluorescence microscopy

Freeze-fracture techniques

Polymerase chain reaction

Principles of - RFLP, RAPD and AFLP techniques

Single strand conformation polymorphism and heteroduplex analysis

Gel retardation assays

DNA Sequencing

Next generation sequencing

Sequencing while synthesizing

Unit-IV

Detection of molecules using ELISA, RIA, immunoprecipitation, flowcytometry

Detection of molecules in living cells, in situ localization by techniques such as FISH and GISH.

Methods for analysis of gene expression at RNA and protein level, large-scale expression analysis, such as micro array based techniques

Coimmunoprecipitation and Chromatin immunoprecipitation

DNA profiling, DNA foot printing

Gene silencina

Micro RNA

RNA interference

BCH - 22 - GE, Metabolic Disorders

Unit I

Introduction to carbohydrates, lipids and their metabolism Disorders of carbohydrate metabolism

Diabetes

Hereditary fructose intolerance

Lactose intolerance

Glycogen storage diseases

Disorders of Lipid Metabolism

Hypercholesterolemia,

Atherosclerosis,

Carnitine related diseases

Unit II

Introduction to amino acids, proteins and nucleic acids

Inherited disorders of amino acid metabolism- Phenylketonuria, Alkaptonuria, Maple syrup urine disease

Nonketotic hyperglycinemia, Propionic acidemia, Hyperprolinemia

Urea cycle disorders-

Hyperammonemia Argininemia,

Deficiency diseases related to Urea cycle enzymes

Disorders of nucleic acid metabolism

Purine and Pyrimidine metabolism related diseases,

Hypo and Hyperuricemia,

Gout, Lesch Nyhan Syndrome, Severe Combined Immunodeficiency Disease (SCID),

Xeroderma pigmentosum.

BCH – 31 - GE, Biology of Chronic Diseases

Unit I

Diabetes: Types causes and prevention.

Diseases linked to functioning of Heart: Cardiomyopathy, Hypertension

Hepatitis

Unit II

Neurological disorders-

Alzheimer's disease

Parkinson's disease

Epilepsy

BCH - 06 - GE, Nutritional Biochemistry

Unit-I

Energy content of foods

BMR and SDA and factors affecting them

Energy requirements of man and woman and factors affecting energy requirements

Protein nutrition

Essential amino acids for man and concept of protein quality

Cereal protein and their limiting amino acids

Protein energy malnutrition (PEM). Etiology, clinical features, metabolic disorders and management of marasmus and kwashiorkor

Carbohydrate nutrition

Dietary requirement and sources of carbohydrates

Protein sparing action

Physiological actions of dietary fibers

Unit-II

Micronutrition

Dietary sources, biochemical functions and deficiency diseases of:

Water soluble

Fat soluble vitamins

Lipid nutrition

Major classes of dietary lipids

Essential fatty acids and their physiological functions

BCH - 14 - GE, Protein Biochemistry

Unit I

Amino acids, the building blocks of proteins Protein – a molecule with myriad of functions Primary structure of the protein and its determination Secondary structure, types Tertiary structure, forces stabilizing tertiary structures Quaternary structures

Unit II

Quantitative estimation of proteins by Lowry's method Bradford's method Spectrophotometric method Polyacrylamide gel electrophoresis of purified proteins Molecular weight determination by gel filtration chromatography and SDS-PAGE.

BCH-23-GE, Enzyme Regulation

Unit I

Enzyme regulation
General mechanism of enzyme regulation
Allosteric enzymes
Sigmoidal kinetics and their physiological significance
Symmetric and sequential modes for action of allosteric enzymes and their significance

Unit II

Feed back inhibition and feed forward stimulation Zymogens, Isozymes Enzyme repression, induction and degradation Control of enzymatic activity by products and substrates Reversible and irreversible covalent modifications of enzymes

BCH-24-OE, Diet, Physical Activity and health

Unit-I

Balanced diet
Components of diet
Diet requirement: young, old, men, women
Diseases due to diet deficiency
Diseases due to over eating
Diet as medicine

Unit-II

Body systems and energy for physical activity Types of physical activity Physical activity for health Physical fitness Nutrition and physical activity Participating in physical activity with safety

BCH-32-GE, Signal Transduction

Unit-I

Cell signaling:

Basic concepts of Signal Transduction Components and general mechanism of Signal Transduction Signaling motifs: SH2, SH3, PH and PDZ domains Role of protein kinases in cell signaling: Serine/ Threonine and Tyrosine kinases

Unit-II

Pathways of intra cellular signal transduction:

GPCR pathway RAS MAPK pathway PI3 Kinase Pathway Techniques to study Signal Transduction

BCH - 07-GE, Biochemical Calculations

Unit I

Concentrations based on volume and weight

Molarity

Normality

Osmolarity

Molality

Acids and bases and their various definition theories

Various definitions

Ionization of strong acids and bases.

Ionization of H₂O, ionic product of water,

Weak acids and bases.

Unit II

Concept of pH and buffer pH, pK and pI of solutions Henderson – Hasselbalch equation Preparation of buffers, pH changes in buffers, buffer capacity

BCH-08-OE, Fundamentals of Biochemistry

Unit I

Water and its role in biological systems Introduction and roles of biomolecules of life

Proteins

Carbohydrates

Lipids

Nucleic acids

Micronutrients

Unit II

Cell as a basic unit of life

Cell components

Functions of the various components

Cell death and its causes

Cell division as the unit of propagation

Concepts of Mitosis and Meiosis

BCH - 15 - GE, Enzyme Immobilization

Unit1

Enzymes as proteins and catalysts
Factors that affect the enzyme activity
Characteristics of free vs. immobilized enzymes
Methods of enzyme immobilization,

Effect of immobilization on enzyme activity, partitioning/diffusion limitations.

Enzyme conformational changes. Enzyme stability and zulu effect.

Enzyme activity dependence on pH, partitioning of protons and limitation of proton diffusion

Unit II

Immobilized enzymes-

Hydrolysis of proteins, cheese manufacture, conversion of corn-starch to dextrose, conversion of dextrose to fructose, hydrolysis of lactose in whey

Biomedical and Analytical applications.

Concept of Red Blood Cells as carrier of enzymes,

Practical demonstration of immobilization process using RBCs

BCH - 33- OE, Biochemical Laboratory Tests and Interpretation

Unit I

Concept of reference values
Observed values
Blood biochemistry
Electrolytes estimation and clinical significance
Blood gas analysis
Blood sugar and its clinical importance

Unit II

Cardiac function tests and clinical uses Liver function tests: diagnostic importance Kidney function test importance Tumor markers – PSA, carbohydrate markers

BCH - 07-GE, Biochemical Calculations

Unit I

Concentrations based on volume and weight

Molarity

Normality

Osmolarity

Molality

Acids and bases and their various definition theories

Various definitions

Ionization of strong acids and bases.

Ionization of H₂O, ionic product of water,

Weak acids and bases.

Unit II

Concept of pH and buffer pH, pK and pI of solutions Henderson – Hasselbalch equation Preparation of buffers, pH changes in buffers, buffer capacity

BCH-08-OE, Fundamentals of Biochemistry

Unit I

Water and its role in biological systems Introduction and roles of biomolecules of life

Proteins

Carbohydrates

Lipids

Nucleic acids

Micronutrients

Unit II

Cell as a basic unit of life

Cell components

Functions of the various components

Cell death and its causes

Cell division as the unit of propagation

Concepts of Mitosis and Meiosis

BCH - 19 - CR, Laboratory Course - III

Isolation of DNA: Different Methods, Different sources Quantification of DNA by Spectroscopy Electrophoresis of Isolated DNA Amplification of a DNA segment by PCR Purification of PCR product Restriction digestion of PCR product Isolation of RNA from leukocytes cDNA synthesis from mRNA

SEMESTER IV

BCH - 25 - CR, Designing And Drafting Of Research Project

A student will have to pick up a problem in biological sciences and develop a grant application on the theme under mentorship of allotted supervisor. Grant application will have following components.

Introduction
National and international scenario
Review of literature
Objective
Possible out come
Significance of the study
Material and methods
Summary

BCH – 26 - CR, Journal Club

The recent and advanced scientific papers in high profile journals will be chosen by the students in consultation with mentor teachers and then presented by the student. The presenter is supposed to have all the relevant knowledge of the article. The audience will include faculty, research scholars and PG students.

BCH - 27 - CR, Laboratory Course - IV

BCH - 02 - CR, Cell Biology- I

Unit-I

Basic properties of cells

Structural organization of prokaryotic and eukaryotic cells

Introduction of viruses

Cell membrane

Chemical composition

Structure and function of membrane proteins

Membrane lipids and membrane fluidity

Dynamic nature of plasma membrane

Movement of substance across cell membrane

Membrane potentials

Mitochondria

Structure and function

Oxidative metabolism in mitochondria

Role of mitochondria in ATP formation

Translocation of protons and establishment of a proton motive force

Unit-II

Introduction to endomembrane system

Approaches to study endomembrane

Endoplasmic reticulum, structure, functions

Golgi complex

Types of vesicle transport and their types

Lysosomes and plant vacuoles, peroxisomes

Moving membranes and materials into the cell interior

Posttranslational uptake of proteins by peroxisome, mitochondria and chloroplasts

Unit-III

Cell wall

Detailed structure and functions of Cell wall

Microbodies

Chloroplast

Structure, function

Photosynthetic units and reaction centers

Photophosphorylation

Unit IV

Extracellular matrix and cell interaction

Extracellular space

Interaction of cells with extracellular material

Tight Junction-sealing the extracellular space

Cell -cell adhesion

Cell -cell communication

The cytoskeleton

Microtubules

Intermediate filaments

Microfilaments

SEMESTER II

BCH – 09 - CR, Metabolism - I

Unit-I

Bioenergetics

Energy transformation by biological systems Concept and significance of free energy Phosphoryl transfer potential Coupled reactions

ATP as energy currency

Metabolon concept

Unit-II

Carbohydrate metabolism

Glycolysis

Citric acid cycle, its function in energy generation and biosynthesis of energy rich-bonds

Pentose phosphate pathway and its regulation

Alternate pathways of carbohydrate metabolism

Gluconeogenesis

Biosynthesis of glycogen and starch

Unit-III

Lipid metabolism

Fatty acid oxidation- α , β , ω , oxidation and lipo-oxidation.

Fatty acid biosynthesis- Acetyl CoA carboxylase, Desaturase and elongase

Biosynthesis of triacylglycerols, Phosphoglycerides and sphingolipids

Biosynthetic pathways for terpenes, steroids and prostaglandins

Ketone bodies-Formation and utilization

Unit-IV

Regulation of carbohydrate and lipid metabolism -hormonal/enzymatic Interactions between carbohydrate and lipid metabolism - role of insulin and adiponectin Inborn errors of carbohydrate and lipid metabolism